Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(4): 114082, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38583155

ABSTRACT

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.


Subject(s)
3' Untranslated Regions , Staphylococcal Infections , Staphylococcus aureus , Animals , 3' Untranslated Regions/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Moths/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Virulence/genetics
2.
RNA Biol ; 20(1): 59-76, 2023 01.
Article in English | MEDLINE | ID: mdl-36860088

ABSTRACT

Traffic of molecules across the bacterial membrane mainly relies on porins and transporters, whose expression must adapt to environmental conditions. To ensure bacterial fitness, synthesis and assembly of functional porins and transporters are regulated through a plethora of mechanisms. Among them, small regulatory RNAs (sRNAs) are known to be powerful post-transcriptional regulators. In Escherichia coli, the MicF sRNA is known to regulate only four targets, a very narrow targetome for a sRNA responding to various stresses, such as membrane stress, osmotic shock, or thermal shock. Using an in vivo pull-down assay combined with high-throughput RNA sequencing, we sought to identify new targets of MicF to better understand its role in the maintenance of cellular homoeostasis. Here, we report the first positively regulated target of MicF, the oppA mRNA. The OppA protein is the periplasmic component of the Opp ATP-binding cassette (ABC) oligopeptide transporter and regulates the import of short peptides, some of them bactericides. Mechanistic studies suggest that oppA translation is activated by MicF through a mechanism of action involving facilitated access to a translation-enhancing region in oppA 5'UTR. Intriguingly, MicF activation of oppA translation depends on cross-regulation by negative trans-acting effectors, the GcvB sRNA and the RNA chaperone protein Hfq.


Subject(s)
Escherichia coli Proteins , RNA, Small Untranslated , RNA, Messenger , Escherichia coli , 5' Untranslated Regions , ATP-Binding Cassette Transporters , Membrane Transport Proteins , Host Factor 1 Protein
3.
PLoS Pathog ; 18(9): e1010827, 2022 09.
Article in English | MEDLINE | ID: mdl-36108089

ABSTRACT

RNA-sequencing has led to a spectacular increase in the repertoire of bacterial sRNAs and improved our understanding of their biological functions. Bacterial sRNAs have also been found in outer membrane vesicles (OMVs), raising questions about their potential involvement in bacteria-host relationship, but few studies have documented this issue. Recent RNA-Sequencing analyses of bacterial RNA unveiled the existence of abundant very small RNAs (vsRNAs) shorter than 16 nt. These especially include tRNA fragments (tRFs) that are selectively loaded in OMVs and are predicted to target host mRNAs. Here, in Escherichia coli (E. coli), we report the existence of an abundant vsRNA, Ile-tRF-5X, which is selectively modulated by environmental stress, while remaining unaffected by inhibition of transcription or translation. Ile-tRF-5X is released through OMVs and can be transferred to human HCT116 cells, where it promoted MAP3K4 expression. Our findings provide a novel perspective and paradigm on the existing symbiosis between bacteria and human cells.


Subject(s)
Escherichia coli , RNA, Bacterial , Cell Proliferation , Escherichia coli/genetics , Gene Expression , Humans , RNA, Bacterial/genetics , RNA, Transfer/genetics
4.
Front Cell Infect Microbiol ; 12: 952948, 2022.
Article in English | MEDLINE | ID: mdl-35865816

ABSTRACT

Metal such as iron, zinc, manganese, and nickel are essential elements for bacteria. These nutrients are required in crucial structural and catalytic roles in biological processes, including precursor biosynthesis, DNA replication, transcription, respiration, and oxidative stress responses. While essential, in excess these nutrients can also be toxic. The immune system leverages both of these facets, to limit bacterial proliferation and combat invaders. Metal binding immune proteins reduce the bioavailability of metals at the infection sites starving intruders, while immune cells intoxicate pathogens by providing metals in excess leading to enzyme mismetallation and/or reactive oxygen species generation. In this dynamic metal environment, maintaining metal homeostasis is a critical process that must be precisely coordinated. To achieve this, bacteria utilize diverse metal uptake and efflux systems controlled by metalloregulatory proteins. Recently, small regulatory RNAs (sRNAs) have been revealed to be critical post-transcriptional regulators, working in conjunction with transcription factors to promote rapid adaptation and to fine-tune bacterial adaptation to metal abundance. In this mini review, we discuss the expanding role for sRNAs in iron homeostasis, but also in orchestrating adaptation to the availability of other metals like manganese and nickel. Furthermore, we describe the sRNA-mediated interdependency between metal homeostasis and oxidative stress responses, and how regulatory networks controlled by sRNAs contribute to survival and virulence.


Subject(s)
Manganese , Nickel , Bacteria , Gene Expression Regulation, Bacterial , Ions/metabolism , Iron/metabolism , Manganese/metabolism , Metals/metabolism , Nickel/metabolism , Transcription Factors/metabolism , Virulence
5.
Front Mol Biosci ; 9: 914991, 2022.
Article in English | MEDLINE | ID: mdl-35720117

ABSTRACT

RNA sequencing (RNA-seq) is the gold standard for the discovery of small non-coding RNAs. Following a long-standing approach, reads shorter than 16 nucleotides (nt) are removed from the small RNA sequencing libraries or datasets. The serendipitous discovery of an eukaryotic 12 nt-long RNA species capable of modulating the microRNA from which they derive prompted us to challenge this dogma and, by expanding the window of RNA sizes down to 8 nt, to confirm the existence of functional very small RNAs (vsRNAs <16 nt). Here we report the detailed profiling of vsRNAs in Escherichia coli, E. coli-derived outer membrane vesicles (OMVs) and five other bacterial strains (Pseudomonas aeruginosa PA7, P. aeruginosa PAO1, Salmonella enterica serovar Typhimurium 14028S, Legionella pneumophila JR32 Philadelphia-1 and Staphylococcus aureus HG001). vsRNAs of 8-15 nt in length [RNAs (8-15 nt)] were found to be more abundant than RNAs of 16-30 nt in length [RNAs (16-30 nt)]. vsRNA biotypes were distinct and varied within and across bacterial species and accounted for one third of reads identified in the 8-30 nt window. The tRNA-derived fragments (tRFs) have appeared as a major biotype among the vsRNAs, notably Ile-tRF and Ala-tRF, and were selectively loaded in OMVs. tRF-derived vsRNAs appear to be thermodynamically stable with at least 2 G-C basepairs and stem-loop structure. The analyzed tRF-derived vsRNAs are predicted to target several human host mRNAs with diverse functions. Bacterial vsRNAs and OMV-derived vsRNAs could be novel players likely modulating the intricate relationship between pathogens and their hosts.

6.
Microb Biotechnol ; 15(7): 2083-2096, 2022 07.
Article in English | MEDLINE | ID: mdl-35502577

ABSTRACT

Pseudomonads play crucial roles in plant growth promotion and control of plant diseases. However, under natural conditions, other microorganisms competing for the same nutrient resources in the rhizosphere may exert negative control over their phytobeneficial characteristics. We assessed the expression of phytobeneficial genes involved in biocontrol, biostimulation and iron regulation such as, phlD, hcnA, acdS, and iron-small regulatory RNAs prrF1 and prrF2 in Pseudomonas brassicacearum co-cultivated with three phytopathogenic fungi, and two rhizobacteria in the presence or absence of Brassica napus, and in relation to iron availability. We found that the antifungal activity of P. brassicacearum depends mostly on the production of DAPG and not on HCN whose production is suppressed by fungi. We have also shown that the two-competing bacterial strains modulate the plant growth promotion activity of P. brassicacearum by modifying the expression of phlD, hcnA and acdS according to iron availability. Overall, it allows us to better understand the complexity of the multiple molecular dialogues that take place underground between microorganisms and between plants and its rhizosphere microbiota and to show that synergy in favour of phytobeneficial gene expression may exist between different bacterial species.


Subject(s)
Alphaproteobacteria , Soil Microbiology , Bacteria/genetics , Fungi , Iron , Plant Diseases/microbiology , Plant Diseases/prevention & control , Rhizosphere
7.
PLoS Biol ; 20(2): e3001528, 2022 02.
Article in English | MEDLINE | ID: mdl-35192605

ABSTRACT

Bacteria are powerful models for understanding how cells divide and accomplish global regulatory programs. In Caulobacter crescentus, a cascade of essential master regulators supervises the correct and sequential activation of DNA replication, cell division, and development of different cell types. Among them, the response regulator CtrA plays a crucial role coordinating all those functions. Here, for the first time, we describe the role of a novel factor named CcnA (cell cycle noncoding RNA A), a cell cycle-regulated noncoding RNA (ncRNA) located at the origin of replication, presumably activated by CtrA, and responsible for the accumulation of CtrA itself. In addition, CcnA may be also involved in the inhibition of translation of the S-phase regulator, GcrA, by interacting with its 5' untranslated region (5' UTR). Performing in vitro experiments and mutagenesis, we propose a mechanism of action of CcnA based on liberation (ctrA) or sequestration (gcrA) of their ribosome-binding site (RBS). Finally, its role may be conserved in other alphaproteobacterial species, such as Sinorhizobium meliloti, representing indeed a potentially conserved process modulating cell cycle in Caulobacterales and Rhizobiales.


Subject(s)
Caulobacter crescentus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Cell Cycle/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic , RNA, Untranslated/genetics , Transcription Factors/metabolism
8.
Noncoding RNA ; 7(4)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34698252

ABSTRACT

Many RNA-RNA interactions depend on molecular chaperones to form and remain stable in living cells. A prime example is the RNA chaperone Hfq, which is a critical effector involved in regulatory interactions between small RNAs (sRNAs) and cognate target mRNAs in Enterobacteriaceae. While there is a great deal of in vitro biochemical evidence supporting the model that Hfq enhances rates or affinities of sRNA:mRNA interactions, there is little corroborating in vivo evidence. Here we used in vivo tools including reporter genes, co-purification assays, and super-resolution microscopy to analyze the role of Hfq in RyhB-mediated regulation, and we found that Hfq is often unnecessary for efficient RyhB:mRNA complex formation in vivo. Remarkably, our data suggest that a primary function of Hfq is to promote RyhB-induced cleavage of mRNA targets by RNase E. Moreover, our work indicates that Hfq plays a more limited role in dictating regulatory outcomes following sRNAs RybB and DsrA complex formation with specific target mRNAs. Our investigation helps evaluate the roles played by Hfq in some RNA-mediated regulation.

9.
mBio ; 12(4): e0104121, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34372700

ABSTRACT

Regulatory RNAs have emerged as ubiquitous gene regulators in all bacterial species studied to date. The combination of sequence-specific RNA interactions and malleable RNA structure has allowed regulatory RNA to adopt different mechanisms of gene regulation in a diversity of genetic backgrounds. In the model Gammaproteobacteria Escherichia coli and Salmonella, the regulatory RNA chaperone Hfq appears to play a global role in gene regulation, directly controlling ∼20 to 25% of the entire transcriptome. While the model Firmicutes Bacillus subtilis and Staphylococcus aureus encode a Hfq homologue, its role has been significantly depreciated. These bacteria also have marked differences in RNA turnover. E. coli and Salmonella degrade RNA through internal endonucleolytic and 3'→5' exonucleolytic cleavage that appears to allow transient accumulation of mRNA 3' UTR cleavage fragments that contain stabilizing 3' structures. In contrast, B. subtilis and S. aureus are able to exonucleolytically attack internally cleaved RNA from both the 5' and 3' ends, efficiently degrading mRNA 3' UTR fragments. Here, we propose that the lack of 5'→3' exoribonuclease activity in Gammaproteobacteria has allowed the accumulation of mRNA 3' UTR ends as the "default" setting. This in turn may have provided a larger pool of unconstrained RNA sequences that has fueled the expansion of Hfq function and small RNA (sRNA) regulation in E. coli and Salmonella. Conversely, the exoribonuclease RNase J may be a significant barrier to the evolution of 3' UTR sRNAs in B. subtilis and S. aureus that has limited the pool of RNA ligands available to Hfq and other sRNA chaperones, depreciating their function in these model Firmicutes.


Subject(s)
Bacteria/genetics , Exoribonucleases/genetics , Exoribonucleases/metabolism , RNA Stability , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Bacteria/classification , Gammaproteobacteria/genetics , Gene Expression Regulation, Bacterial , Gram-Positive Bacteria/genetics , RNA, Bacterial/genetics
10.
Front Microbiol ; 12: 706690, 2021.
Article in English | MEDLINE | ID: mdl-34367109

ABSTRACT

The success of the major opportunistic human Staphylococcus aureus relies on the production of numerous virulence factors, which allow rapid colonization and dissemination in any tissues. Indeed, regulation of its virulence is multifactorial, and based on the production of transcriptional factors, two-component systems (TCS) and small regulatory RNAs (sRNAs). Advances in high-throughput sequencing technologies have unveiled the existence of hundreds of potential RNAs with regulatory functions, but only a fraction of which have been validated in vivo. These discoveries have modified our thinking and understanding of bacterial physiology and virulence fitness by placing sRNAs, alongside transcriptional regulators, at the center of complex and intertwined regulatory networks that allow S. aureus to rapidly adapt to the environmental cues present at infection sites. In this review, we describe the recently acquired knowledge of characterized regulatory RNAs in S. aureus that are associated with metal starvation, nutrient availability, stress responses and virulence. These findings highlight the importance of sRNAs for the comprehension of S. aureus infection processes while raising questions about the interplay between these key regulators and the pathways they control.

11.
Sci Rep ; 11(1): 11763, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083699

ABSTRACT

Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions ('phylogenetic promiscuity'). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS-GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.


Subject(s)
Biological Evolution , Protein Kinases/metabolism , Signal Transduction , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phenotype , Phosphorylation , Phylogeny , Protein Binding , Protein Interaction Domains and Motifs , Protein Kinases/genetics , Pseudomonas/classification , Pseudomonas/genetics
12.
J Vis Exp ; (168)2021 02 23.
Article in English | MEDLINE | ID: mdl-33720114

ABSTRACT

Although small regulatory RNAs (sRNAs) are widespread among the bacterial domain of life, the functions of many of them remain poorly characterized notably due to the difficulty of identifying their mRNA targets. Here, we described a modified protocol of the MS2-Affinity Purification coupled with RNA Sequencing (MAPS) technology, aiming to reveal all RNA partners of a specific sRNA in vivo. Broadly, the MS2 aptamer is fused to the 5' extremity of the sRNA of interest. This construct is then expressed in vivo, allowing the MS2-sRNA to interact with its cellular partners. After bacterial harvesting, cells are mechanically lysed. The crude extract is loaded into an amylose-based chromatography column previously coated with the MS2 protein fused to the maltose binding protein. This enables the specific capture of MS2-sRNA and interacting RNAs. After elution, co-purified RNAs are identified by high-throughput RNA sequencing and subsequent bioinformatic analysis. The following protocol has been implemented in the Gram-positive human pathogen Staphylococcus aureus and is, in principle, transposable to any Gram-positive bacteria. To sum up, MAPS technology constitutes an efficient method to deeply explore the regulatory network of a particular sRNA, offering a snapshot of its whole targetome. However, it is important to keep in mind that putative targets identified by MAPS still need to be validated by complementary experimental approaches.


Subject(s)
Aptamers, Nucleotide/metabolism , Chromatography, Affinity , Gram-Positive Bacteria/genetics , Sequence Analysis, RNA , Base Sequence , Buffers , Cell Fractionation , Data Analysis , Gene Expression Regulation, Bacterial , Humans , Plasmids/genetics , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/genetics , Reproducibility of Results , Staphylococcus aureus/genetics
13.
Microorganisms ; 9(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530561

ABSTRACT

In the beneficial plant root-associated Pseudomonas brassicacearum strain NFM421, the GacS/GacA two-component system positively controls biofilm formation and the production of secondary metabolites through the synthesis of rsmX, rsmY and rsmZ. Here, we evidenced the genetic amplification of Rsm sRNAs by the discovery of a novel 110-nt long sRNA encoding gene, rsmX-2, generated by the duplication of rsmX-1 (formerly rsmX). Like the others rsm genes, its overexpression overrides the gacA mutation. We explored the expression and the stability of rsmX-1, rsmX-2, rsmY and rsmZ encoding genes under rich or nutrient-poor conditions, and showed that their amount is fine-tuned at the transcriptional and more interestingly at the post-transcriptional level. Unlike rsmY and rsmZ, we noticed that the expression of rsmX-1 and rsmX-2 genes was exclusively GacA-dependent. The highest expression level and longest half-life for each sRNA were correlated with the highest ppGpp and cyclic-di-GMP levels and were recorded under nutrient-poor conditions. Together, these data support the view that the Rsm system in P. brassicacearum is likely linked to the stringent response, and seems to be required for bacterial adaptation to nutritional stress.

14.
Biochim Biophys Acta Gene Regul Mech ; 1863(3): 194506, 2020 03.
Article in English | MEDLINE | ID: mdl-32068131

ABSTRACT

Discovered in the 1980s, small regulatory RNAs (sRNAs) are now considered key actors in virtually all aspects of bacterial physiology and virulence. Together with transcriptional and translational regulatory proteins, they integrate and often are hubs of complex regulatory networks, responsible for bacterial response/adaptation to various perceived stimuli. The recent development of powerful RNA sequencing technologies has facilitated the identification and characterization of sRNAs (length, structure and expression conditions) and their RNA targets in several bacteria. Nevertheless, it could be very difficult for non-experts to understand the advantages and drawbacks related to each offered option and, consequently, to make an informed choice. Therefore, the main goal of this review is to provide a guide to navigate through the twists and turns of high-throughput RNA sequencing technologies, with a specific focus on those applied to the study of sRNAs. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.


Subject(s)
RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism , Sequence Analysis, RNA , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Nucleic Acid Conformation
15.
Mol Microbiol ; 113(3): 603-612, 2020 03.
Article in English | MEDLINE | ID: mdl-31705780

ABSTRACT

Trans-acting small regulatory RNAs (sRNAs) are key players in the regulation of gene expression in bacteria. There are hundreds of different sRNAs in a typical bacterium, which in contrast to eukaryotic microRNAs are more heterogeneous in length, sequence composition, and secondary structure. The vast majority of sRNAs function post-transcriptionally by binding to other RNAs (mRNAs, sRNAs) through rather short regions of imperfect sequence complementarity. Besides, every single sRNA may interact with dozens of different target RNAs and impact gene expression either negatively or positively. These facts contributed to the view that the entirety of the regulatory targets of a given sRNA, its targetome, is challenging to identify. However, recent developments show that a more comprehensive sRNAs targetome can be achieved through the combination of experimental and computational approaches. Here, we give a short introduction into these methods followed by a description of two sRNAs, RyhB, and RsaA, to illustrate the particular strengths and weaknesses of these approaches in more details. RyhB is an sRNA involved in iron homeostasis in Enterobacteriaceae, while RsaA is a modulator of virulence in Staphylococcus aureus. Using such a combined strategy, a better appreciation of the sRNA-dependent regulatory networks is now attainable.


Subject(s)
Computational Biology/methods , Gene Expression Regulation, Bacterial/genetics , RNA, Small Untranslated/genetics , Bacteria/genetics , Enterobacteriaceae/genetics , Gene Expression/genetics , Genes, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , Staphylococcus aureus/genetics
16.
Nucleic Acids Res ; 47(18): 9871-9887, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31504767

ABSTRACT

The human opportunistic pathogen Staphylococcus aureus produces numerous small regulatory RNAs (sRNAs) for which functions are still poorly understood. Here, we focused on an atypical and large sRNA called RsaC. Its length varies between different isolates due to the presence of repeated sequences at the 5' end while its 3' part is structurally independent and highly conserved. Using MS2-affinity purification coupled with RNA sequencing (MAPS) and quantitative differential proteomics, sodA mRNA was identified as a primary target of RsaC sRNA. SodA is a Mn-dependent superoxide dismutase involved in oxidative stress response. Remarkably, rsaC gene is co-transcribed with the major manganese ABC transporter MntABC and, consequently, RsaC is mainly produced in response to Mn starvation. This 3'UTR-derived sRNA is released from mntABC-RsaC precursor after cleavage by RNase III. The mature and stable form of RsaC inhibits the synthesis of the Mn-containing enzyme SodA synthesis and favors the oxidative stress response mediated by SodM, an alternative SOD enzyme using either Mn or Fe as co-factor. In addition, other putative targets of RsaC are involved in oxidative stress (ROS and NOS) and metal homeostasis (Fe and Zn). Consequently, RsaC may balance two interconnected defensive responses, i.e. oxidative stress and metal-dependent nutritional immunity.


Subject(s)
Bacterial Proteins/genetics , Oxidative Stress/genetics , Staphylococcal Infections/genetics , Staphylococcus aureus/genetics , Bacterial Proteins/chemistry , Gene Expression Regulation, Bacterial/genetics , Homeostasis/genetics , Humans , Manganese/chemistry , Oxidation-Reduction , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Starvation , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics
17.
Proc Natl Acad Sci U S A ; 116(8): 3042-3051, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718400

ABSTRACT

Transcription termination is a critical step in the control of gene expression. One of the major termination mechanisms is mediated by Rho factor that dissociates the complex mRNA-DNA-RNA polymerase upon binding with RNA polymerase. Rho promotes termination at the end of operons, but it can also terminate transcription within leader regions, performing regulatory functions and avoiding pervasive transcription. Transcription of rho is autoregulated through a Rho-dependent attenuation in the leader region of the transcript. In this study, we have included an additional player in this pathway. By performing MS2-affinity purification coupled with RNA sequencing (MAPS), rho transcript was shown to directly interact with the small noncoding RNA SraL. Using bioinformatic in vivo and in vitro experimental analyses, SraL was shown to base pair with the 5'-UTR of rho mRNA upregulating its expression in several growth conditions. This base pairing was shown to prevent the action of Rho over its own message. Moreover, the results obtained indicate that both ProQ and Hfq are associated with this regulation. We propose a model that contemplates the action of Salmonella SraL sRNA in the protection of rho mRNA from premature transcription termination by Rho. Note that since the interaction region between both RNAs corresponds to a very-well-conserved sequence, it is plausible to admit that this regulation also occurs in other enterobacteria.


Subject(s)
DNA/genetics , RNA, Small Untranslated/genetics , Rho Factor/genetics , Transcription Termination, Genetic , DNA/biosynthesis , DNA-Directed RNA Polymerases/genetics , Gene Expression Regulation, Bacterial/genetics , Nucleic Acid Conformation , RNA, Messenger/genetics , Salmonella enterica/genetics , Sequence Analysis, RNA , Transcription, Genetic
18.
Mol Microbiol ; 111(2): 473-486, 2019 02.
Article in English | MEDLINE | ID: mdl-30447071

ABSTRACT

GcvB small RNA is described as post-transcriptional regulator of 1-2% of all mRNAs in Escherichia coli and Salmonella Typhimurium. At least 24 GcvB:mRNA interactions have been validated in vivo, establishing the largest characterized sRNA targetome. By performing MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we identified seven additional mRNAs negatively regulated by GcvB in E. coli. Contrary to the vast majority of previously known targets, which pair to the well-conserved GcvB R1 region, we validated four mRNAs targeted by GcvB R3 region. This indicates that base-pairing through R3 seed sequence seems relatively common. We also noticed unusual GcvB pairing sites in the coding sequence of two target mRNAs. One of these target mRNAs has a pairing site displaying a unique ACA motif, suggesting that GcvB could hijack a translational enhancer element. The second target mRNA is likely regulated via an active RNase E-mediated mRNA degradation mechanism. Remarkably, we confirmed the importance of the sRNA sponge SroC in the fine-tuning control of GcvB activity in function of growth conditions such as growth phase and nutrient availability.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , RNA, Messenger/antagonists & inhibitors , RNA, Small Untranslated/metabolism , Base Pairing , Protein Biosynthesis
19.
Methods Enzymol ; 612: 393-411, 2018.
Article in English | MEDLINE | ID: mdl-30502950

ABSTRACT

Staphylococcus aureus is a Gram-positive major human pathogen involved in a wide range of human infectious diseases (from minor skin infections to septicemia, endocarditis or toxic shock syndrome). The treatment of S. aureus infections is very challenging due to the emergence of multiple antibiotic-resistant isolates. The high diversity of clinical symptoms caused by S. aureus depends on the precise expression of numerous virulence factors and stress response pathways, which are tightly regulated at every level (transcriptional, posttranscriptional, translational, and posttranslational). During the last two decades, it has become evident that small regulatory RNAs (sRNAs) play a major role in fast adaptive responses, mainly by targeting mRNA translation. sRNAs act as antisense RNAs by forming noncontiguous pairings with their target mRNAs and their mechanisms of action vary according to the interaction site. To obtain a global and detailed view of the regulatory networks involved in the adaptive processes of S. aureus, we have adapted the MAPS approach to get individual sRNA targetomes. We also set up different strategies to validate MAPS results and establish sRNA regulatory activities. As this method has been first developed in Gram-negative bacteria, we provide here a protocol for its application in S. aureus and highlight underlying differences. Finally, we discuss several points that have been and could be further improved and provide a workflow file for the automatic analysis of the sequencing in Galaxy.


Subject(s)
RNA, Bacterial/genetics , Sequence Analysis, RNA/methods , Staphylococcus aureus/genetics , Gene Expression Regulation, Bacterial/genetics , Humans , Virulence Factors/genetics
20.
Annu Rev Microbiol ; 72: 141-161, 2018 Sep 08.
Article in English | MEDLINE | ID: mdl-30200848

ABSTRACT

The first report of trans-acting RNA-based regulation in bacterial cells dates back to 1984. Subsequent studies in diverse bacteria unraveled shared properties of trans-acting small regulatory RNAs, forming a clear definition of these molecules. These shared characteristics have been used extensively to identify new small RNAs (sRNAs) and their interactomes. Recently however, emerging technologies able to resolve RNA-RNA interactions have identified new types of regulatory RNAs. In this review, we present a broader definition of trans-acting sRNA regulators and discuss their newly discovered intrinsic characteristics.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Gene Expression Regulation, Bacterial , RNA, Bacterial/metabolism , RNA, Small Untranslated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...